
HGH-CORDIC: A High-Radix Generalized
Hyperbolic COordinate Rotation Digital Computer

Hui Chen1, Lianghua Quan2, Weiqiang Liu1

1College of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, China
2School of Electronic Science and Engineering, Nanjing University, China

Abstract—In this paper, we propose a high-radix general-
ized hyperbolic coordinate rotation digital computer (HGH-
CORDIC), which not only can compute the logarithmic and
exponential functions with any fixed base, but also can re-
duce the number of iterations compared with the traditional
CORDIC. First, we propose the general iteration formulas for
HGH-CORDIC. Then we demonstrate its important convergence
property and selection criteria, and illustrate them with the
most commonly used examples. Through software simulation, we
further prove the correctness of the theory. Finally, we analyze
how to implement it efficiently in hardware. Compared with the
state-of-the-art work, HGH-CORDIC can reduce the number of
iterations by more than 50% with the same accuracy.

Index Terms—High-radix, hyperbolic CORDIC, generalized,
logarithmic, exponential, hardware implementation

I. INTRODUCTION

Since Volder invented CORDIC (COordinate Rotation Dig-
ital Computer) [1], various research and applications about
CORDIC have been pouring in. Over the past sixty years,
many variants and hardware implementations of CORDIC
have appeared to expand its application form. Later, it was first
extended to other coordinate systems by Walther, who unified
the CORDIC algorithm [2]. In this way, CORDIC has three
coordinate systems: circular, linear, and hyperbolic. Coupled
with the existence of rotation and vector modes, they can be
used to compute many basic mathematical operations, such as
trigonometric [3], [4], logarithmic, and exponential functions
[5] besides multiplication and division.

The initial application was to build real-time navigation
computers for aircraft and was primarily focused on imple-
menting trigonometric functions [6]. Later, its applications
are also extended to eigenvalue calculation [7], singular value
decomposition (SVD) [8], robotics control [9], and artificial
intelligence [10]. The reason why CORDIC is widely used is
that it can continuously iterate to obtain a more accurate calcu-
lation result with only shift-and-add operations. However, such
as the lookup table (LUT) method or the linear approximation
method, also needs additional storage memory (or registers)
or multipliers with large area cost, and they are unsuitable for
obtaining high calculation precision.

The main disadvantage of CORDIC is that it requires
more iterations to achieve higher accuracy, which results in

This work was supported by the National Nature Science Foundation of
China under Grant No. 92364201. Corresponding authors: Hui Chen and
Weiqiang Liu (e-mail: huichen@nuaa.edu.cn; liuweiqiang@nuaa.edu.cn).

long computation latency. To improve this shortcoming, many
scholars have done research from different levels. On the one
hand, they optimize the algorithm or hardware architecture
of the traditional CORDIC (radix-2), and on the other hand,
very-high radix CORDIC is proposed to reduce the number
of iterations. The former’s works include a semi-iterative 2D
CORDIC algorithm [11] and rotation angle precoding method
[12]. The latter’s works include very-high radix CORDIC
algorithm [13], [14]. In the actual hardware implementation,
because of the highest complexity of the radix-8 CORDIC
algorithm, its hardware area consumption is larger than radix-
4 or radix-2 CORDIC. Although radix-8 CORDIC can further
reduce the number of iterations under the same precision
condition, it has lower cost performance than the other two
CORDIC. Among the three CORDIC algorithms, radix-4
CORDIC is often the best choice. It can not only reduce the
number of iterations than radix-2 CORDIC but also minimize
the hardware cost through some approximation schemes. This
is the reason why this paper will focus on radix-4 CORDIC.

Other aspects of CORDIC that have been studied include
scalability. Because the convergence range of the CORDIC
algorithm is limited, Hu Xiaobo et al. earlier proposed an
extension method for CORDIC in various modes and co-
ordinate systems [15]. This method also paves the way for
further research to implement more complex mathematical
functions, such as calculating Nth root [16]. Moreover, the
traditional hyperbolic CORDIC can only be used to calculate
exponential and logarithmic functions with base-e (i.e., ex

and lnx), which has certain application limitations. To solve
this problem, Luo et al. proposed a generalized hyperbolic
CORDIC (GH-CORDIC) algorithm, which can realize loga-
rithmic and exponential functions of arbitrary base (i.e., bx and
logbx, b is an integer) [17]. The proposed extension method
also provides optimization means for implementing many
complex functions, such as XY -like computations [18] and
base-2 softmax function [19]. In particular, base-2 hyperbolic
CORDIC is more promising in floating-point operations, such
as floating-point logarithmic function [20] and Nth root [21].
Unfortunately, the previous extension theory and related good
works are all based on the radix-2 CORDIC algorithm. The
disadvantage of long calculation latency makes it unacceptable
in applications with strict computing speed requirements. This
is the motivation of this paper to put forward the theory
of high-radix GH-CORDIC, and why the analysis especially

focuses on the base-2 hyperbolic CORDIC.
To sum up, GH-CORDIC has a wide range of application

values, and utilizing high-radix CORDIC theory is an impor-
tant means to solve the long computation latency problem of
traditional GH-CORDIC. Therefore, we propose the theory
of high-radix GH-CORDIC (HGH-CORDIC) to fill the gap,
and especially present the most commonly used hyperbolic
(with base-2) CORDIC (with radix-4) in detail. Of course, the
proposed theory can also support higher-radix GH-CORDIC,
such as radix-8 and radix-16 GH-CORDIC.

The rest of this work is structured as follows. Section II
introduces the theory of radix-2 GH-CORDIC and shows
how to use it to calculate arbitrary fixed-base logarithms
and exponentials. Section III develops the theory of HGH-
CORDIC, which can quickly compute the base-b (b is a
variable) logarithmic and exponential functions with lower
iterations than radix-2 GH-CORDIC. In Section IV, some
software simulation experiments are shown. Then, we make
a hardware implementation analysis of HGH-CORDIC in
Section V. Finally, we summarize the work in Section VI.

II. THEORY OF THE RADIX-2 GENERALIZED HYPERBOLIC
CORDIC AND ITS APPLICATION

In this section, we first introduce the theory of the radix-2
GH-CORDIC. Then, we show how to realize the logarithmic
and exponential functions with an arbitrary base using it.

A. Working Principle of Radix-2 GH-CORDIC

Like the traditional hyperbolic CORDIC, radix-2 GH-
CORIC has two modes: vector and rotation. The essence of
both modes is coordinate rotation, as shown in Fig. 1.

Vector Rotation

X

Y

O xBxA

yB

yA
ꞵ

B

B

A

A

x2-y2=1

α

Fig. 1. Coordinate rotation principle of radix-2 GH-CORDIC.

The curve satisfies the equation x2 − y2 = 1. There are
two color-coded points A and B. When A is rotated to B on
the X-axis, it is considered a vector mode (GHV-CORDIC)
(blue). When A rotates at an angle β to B, it is regarded
as a rotation mode (GHR-CORDIC) (orange). According to
the generalized hyperbolic definition, the coordinate of A is
defined as [

xA
yA

]
=

[
coshb α
sinhb α

]
=

[
bα+b−α

2
bα−b−α

2

]
, (1)

where b ∈ N∗ but b 6= 1.
Taking the rotation mode as an example, when point A

rotates to point B, the coordinates of point B will be[
xB
yB

]
=

[
coshb(α+ β)
sinhb(α+ β)

]
, (2)

where β is the actual rotation angle. According to the mathe-
matical identity transformation, (2) is unrolled to[

xB
yB

]
=

[
xA coshb β + yA sinhb β
yA coshb β + xA sinhb β

]
. (3)

If we extract coshb β from (3), it will be

[
xB
yB

]
=

 1√
1−tanh2

b β
(xA + yA tanhb β)

1√
1−tanh2

b β
(yA + xA tanhb β)

 . (4)

The basic working principle of GH-CORDIC is to decompose
β into the combination of some small angle βi with direction,

βi = di tanh−1b (2−i), di ∈ {−1, +1}, i = 1, 2, 3, · · · . (5)

Since tanhb(βi) = di2
−i, the complicated multiplication

operation with yA or xA in (4) will become the simple shift
operation in hardware. Equation (4) is now rewritten as[

xB
yB

]
=

1√
1− 2−2i

[
1 di2

−i

di2
−i 1

] [
xA
yA

]
. (6)

In the actual use of GH-CORDIC, the number of total
iterations is usually determined according to the calculation
accuracy requirements. That is, we do not use complex logic in
the hardware to calculate the scaling factor Π∞i=1 =

√
1− 2−2i

(denoted as Kgh). Instead, Kgh will be computed as a constant
ahead of time, and a constant multiplier may be used when
the final result needs to be scaled by K−1gh .

Based on the aforementioned working principle, we can
easily understand the GH-CORDIC iteration formulas [17]:

xi+1 = xi + di(2
−iyi),

yi+1 = yi + di(2
−ixi),

zi+1 = zi − di tanh−1b (2−i),

(7)

where tanh−1b (2−i) = tanh−1(2−i)/ ln(b) and i starts from
1. The determined value of di in each iteration is related to
the working mode of GH-CORDIC. In the GHR-CORDIC
algorithm, di is determined by zi. However, di is determined
by xi and yi in the GHV-CORDIC algorithm. That is,

di =

{
sign(zi), (for GHR-CORDIC)

−sign(yi). (for GHV-CORDIC)
(8)

Through a certain number of iterations n, the convergent
functions of GH-CORDIC are shown in Table I under the
initial inputs (x0, y0, z0).

TABLE I
CONVERGENT FUNCTIONS OF GH-CORDIC

Type Outputs

GHR-CORDIC
xn = Kgh(x0 · coshb(z0)− y0 · sinhb(z0))
yn = Kgh(y0 · coshb(z0) + x0 · sinhb(z0))

zn → 0

GHV-CORDIC
xn = Kgh

√
(x0)2 − (y0)2

yn → 0

zn = z0 + tanh−1
b (y0/x0)

B. Approach of Using GH-CORDIC
In order to calculate logarithmic and exponential results

using GH-CORDIC, we need to place specific constraints on
the initial inputs. From the convergence functions, it can be
observed that the exponential function can be realized using
GHR-CORDIC and the logarithmic function can be realized
using GHV-CORDIC.

If we initialize the inputs of GHR-CORDIC as

x0 = y0 = 1/Kgh, z0 = Q, (9)

when zn approaches 0 through iterations, yn approximates to

yn = coshb(Q) + sinhb(Q) = bQ, (10)

which happens to be an approximate exponential result.
Similarly, when the initialization of GHV-CORDIC inputs

is given as

x0 = Q+ 1, y0 = Q− 1, z0 = 0, (11)

when yn approaches 0 through iterations, zn converges to

zn = tanhb(
Q− 1

Q+ 1
) = tanh(

Q− 1

Q+ 1
)/ ln b =

1

2
logbQ, (12)

which is an approximate logarithmic result by shifting one bit
to the left in hardware (2 · zn).

At this point, the derivation using GH-CORDIC to calculate
bQ and logbQ for any base-b is complete. Compared with the
most primitive hyperbolic CORDIC [2], it no longer requires
a constant multiplier (1

lnb · lnQ) or divider (lnQlnb) to achieve
arbitrary logarithms with base-b. However, it still works on the
basic principle of radix-2 CORDIC, so GH-CORDIC achieves
convergent results in a slow iterative process. So we propose a
definition of GH-CORDIC with higher radix in the following.

III. DEFINITION OF HIGH-RADIX GH-CORDIC AND ITS
VARIOUS PROPERTIES

Although the traditional hyperbolic CORDIC of high-radix
was proposed in 1993 [22], it can only accelerate the calcu-
lation of natural logarithms and exponents (lnx and ex), but
can not realize arbitrary logbx and bx functions. Therefore, we
propose a method called HGH-CORDIC to solve it.

We first give the definitions of HGH-CORDIC. Then,
we analyze their convergence range and make an example
analysis. Next, we present the important selection criteria of
HGH-CORDIC, especially for the demonstration of radix-4
GH-CORDIC (most cost-effective in hardware). Finally, we
provide the general number of iterations of HGH-CORDIC.

A. The Proposed High-radix GH-CORDIC

When considering a higher radix r for GH-CORDIC, more
results need to be calculated for each iteration to reduce the
total number of iterations. Usually, the radix r is a power of
two, and the rotation angle β is decomposed into a series of
elementary angles, whose values are tanhb(βi) = dir

−i. The
coefficients di can take values from the minimally redundant
integer set [−r/2, r/2]. In other words, the direction and
rotation degree of each iteration is different. The degree may
be large or small, or even the same. Especially for radix higher
than 4, di is not integer powers of two and the hardware
complexity of each iteration increases significantly [22].

The high-radix iteration formulas for the two modes of GH-
CORDIC are different. We need to talk about them separately.

First, we propose the radix-r GH-CORDIC equations of
rotation mode (HGHR-CORDIC) based on (7):

xi+1 = xi + di(r
−iyi),

yi+1 = yi + di(r
−ixi),

wi+1 = r(wi − ri tanh−1b (dir
−i)).

(13)

In order to have the non-zero digits always in the most sig-
nificant positions to select di, here we use a scaled recurrence
wi = rizi to decompose the rotation angle instead of the
more conventional recurrence zi+1 = zi − tanh−1b (dir

−i),
which is a standard practice in other digit recurrences, such as
division and square root [23]. The value of di is determined
by a selection criterion, which must assure the convergence
of the proposed HGHR-CORDIC algorithm. We need to
bound the new variable wi by upper limit (Ui[q]) and lower
limit (Li[q])), which follows a similar method to the one
proposed for the radix-r SRT division algorithm [24]. Ui[q]
and Li[q] are monotonic functions, i.e. Ui[q] ≤ Ui[q + 1]
and Li[q] ≤ Li[q + 1]. The bounded limits can be defined
as follows:

Ui[q] = ri[tanh−1b (qr−i) +
p

r − 1
tanh−1b (r−i)],

Li[q] = ri[tanh−1b (qr−i)− p

r − 1
tanh−1b (r−i)],

(14)

where q ∈ {± r2 , ±(r2 − 1), · · · , 0}. In each iteration, there
must be a selection function, di = q, for which wi is limited
in an interval Li[q] ≤ wi ≤ Ui[q]. To maximize the overlap
between the intervals used for choosing different di values and
minimize redundancy, p is often selected as r/2.

Through multiple iterations based on the desired precision,
we can obtain the same convergent functions as radix-2 GH-
CORDIC. However, one difference is that the scaling factor
Kgh is no longer a predeterminable constant. For high-radix
GH-CORDIC, it is reexpressed as Khgh and should be

Khgh =
∏
i≥1

√
1− d2i r−2i. (15)

Because the selected value of di for each iteration is not fixed,
Kgh has to be calculated and compensated to preserve the
norm of the vector. Later we will provide efficient solutions
to get its results.

Second, for the radix-r GH-CORDIC equations of vector
mode (HGHV-CORDIC), we similarly define a new scaled
recurrence wi = riyi. After the conversion, the equations in
(7) will be changed to

xi+1 = xi − di(r−2iwi),
wi+1 = r(wi − dixi),
zi+1 = zi + tanh−1b (dir

−i).

(16)

To make sure the algorithm is still convergent, wi also must
be bounded between the lower limit function and upper limit
function. Similarly, we define them as

Ui[a] = (a+
p

r − 1
)xi, Li[a] = (a− p

r − 1
)xi. (17)

di = a is selected by the criteria given in an interval Li[a] ≤
wi ≤ Ui[a] to guarantee convergence of HGHV-CORDIC.
Similarly, p is often selected as r/2.

Based on (16) and suitable selection criteria for di, we will
get the same convergence result as the radix-2 GH-CORDIC.
But most importantly, HGHV-CORDIC can quickly calculate
the logarithmic results.

B. Convergence Range of HGH-CORDIC
According to the theorem of CORDIC [15], the convergence

range of HGH-CORDIC depends on the maximum sum of the
rotation angles βmax, which can be defined as

βmax =

∞∑
i=1

|βi| =
∞∑
i=1

| tanh−1b (dir
−i)|

=

∞∑
i=1

tanh−1(dir
−i)

| ln b|
=

1

| ln b|

∞∑
i=1

tanh−1(dir
−i).

(18)

It is worth mentioning that the high-radix (such as radix-4)
GH-CORDIC should not require any repeated iteration for
convergence.

Therefore, the convergence range of HGHR-CORDIC can
be given by

|z0| ≤ βmax ≤
1

| ln b|

∞∑
i=1

tanh−1(
r1−i

2
), (19)

because the maximum value of di is r
2 . Similarly, we can get

the convergence range of HGHV-CORDIC as follows:

| tanh−1b (
y0
x0

)| = |
tanh−1(y0x0

)

ln b
|

≤ βmax =
1

| ln b|

∞∑
i=1

tanh−1(dir
−i).

(20)

So

| tanh−1(
y0
x0

)| ≤
∞∑
i=1

tanh−1(dir
−i) ≤

∞∑
i=1

tanh−1(
r1−i

2
).

(21)

When we use HGHV-CORDIC to compute logbQ, the input
Q must meet the following condition.

|Q− 1

Q+ 1
| ≤ tanh(

∞∑
i=1

tanh−1(
r1−i

2
)). (22)

For example, when the radix of HGH-CORDIC is 4 and the
base of the generalized hyperbolic function is 2.

|Q− 1

Q+ 1
| ≤ tanh(

∞∑
i=1

tanh−1(
41−i

2
)) = 0.6148. (23)

So the range of Q using HGHV-CORDIC can be derived as

Q ∈ [0.2386, 4.1924]. (24)

If we use HGHR-CORDIC, the input range of z0 (Q) will be

|z0| = |Q| ≤
1

| ln 2|

∞∑
i=1

tanh−1(
41−i

2
) = 1.0339. (25)

C. Selection Criteria in HGH-CORDIC

From the previous subsection, it can be seen that the
selection function of di is crucial, which determines whether
HGH-CORDIC can converge. In addition, it also determines
the cost of hardware implementation.

Let’s start with HGHV-CORDIC. For the sake of derivation
and exposition, we take r = 4 and b = 2 as an example
(denoted as H4G2HV-CORDIC). From (17), we get a clear
equation to guarantee the convergence of H4G2HV-CORDIC.

Ui[a] = (a+
2

3
)xi, Lj [a] = (a− 2

3
)xi. (26)

Then, we can use (26) to derive the criteria intervals to
select di. The value of the variable wi should be bounded
within this interval in each iteration to ensure convergence.
For example, to choose di = 2, wi must fall within the interval
[43xi,

8
3xi]. Analogously, to choose di = 1, wi must fall

within the interval [13xi,
5
3xi]. They have an overlap interval,

which is [43xi,
5
3xi]. We can select any value from the overlap

interval. In other words, many judgment criteria for wj can be
used. However, adopting arbitrary functions can easily lead
to complex and impractical implementations. Therefore, we
try to design hardware-friendly judgment criteria to produce a
simple implementation architecture.

According to the overlap principle, the relationship among
selection value, judgment criteria, and overlap interval is
presented in Table II. To facilitate the hardware implemen-
tation, { 32xi,

1
2xi, −

1
2xi, −

3
2xi} are selected as the judgment

boundary from the overlap interval.

TABLE II
H4G2HV-CORDIC: RELATIONSHIP AMONG SELECTION VALUE,

JUDGMENT CRITERIA AND OVERLAP INTERVAL

Selection Value Judgment Criteria Overlapping Interval

2 wi ≥ 3
2
xi [4

3
xi,

5
3
xi]

1 1
2
xi ≤ wi <

3
2
xi [1

3
xi,

2
3
xi]

0 − 1
2
xi ≤ wi <

1
2
xi [− 2

3
xi, − 1

3
xi]

-1 − 3
2
xi ≤ wi < − 1

2
xi [− 5

3
xi, − 4

3
xi]

-2 wi < − 3
2
xi /

Similar to the high-radix CORDIC of the circular system,
we can also seek an iteration i such that the judgment
boundaries belong to the common overlap region. Although

the object of our study is the vector mode of generalized
hyperbolic CORDIC, its high-radix principle is the same as
the vector mode of traditional circular CORDIC. So we’re not
going to do detailed reasoning. So we skip the details of its
derivation here. According to the theoretical proof in [25], we
can directly get the following inequality:

L∞[2] ≤ Di(2) ≤ Ui[1] (i ≥ 2),

L∞[1] ≤ Di(1) ≤ Ui[0] (i ≥ 1),

L∞[0] ≤ Di(−1) ≤ Ui[−1] (i ≥ 1),

L∞[−1] ≤ Di(−2) ≤ Ui[−2] (i ≥ 2),

(27)

where Di is the selected judgment boundary from the overlap
interval. Finally, we can get the simplified judgment boundary
for different iterations in (28), which means that we only need
to calculate the judgment boundaries in the first iteration for
Di[±1] and first two iterations for Di[±2]. From this iteration
on, the calculated values [D2(2), D1(1), D1(−1), D2(−2)]
are valid for the remaining iterations.

Di(±1) = ±1

2
· x1 (if i ≥ 1),

Di(±2) =

{
± 3

2 · x1 (if i = 1),

± 3
2 · x2 (if i ≥ 2).

(28)

Next, we discuss the selection criteria for H4G2HR-
CORDIC (r = 4 and b = 2). Other cases are similar. To be
able to obtain a selection function independent of the iteration
index, the limits of the di selection intervals must be the same
in each iteration. Then, we can identify a common overlap
region for all iterations, which determines the limits of the
selection intervals independent of i. It is possible for all micro-
rotations with i ≥ 1.

First, we discuss the case for i ≥ 1 and find the overlap
between the selection intervals corresponding to coefficients
{0, ±1, ±2}. If the above situation is true, then we can get
the following relationship:

di = q if L[q] ≤ wi ≤ U [q], (29)

where L[q] = max{Li[q]} and U [q] = min{Ui[q]}. Before
proving that (29) is true, we need to complete another the-
oretical proof to guarantee it. It should be emphasized that
the theory is not the same as the high-radix CORDIC in the
circular system [26].

THEOREM: Selecting di according to the criterion given
in (14), if we define Pi[q] = 4i tanh−12 (q4−i), we have that{

U1[q] ≥ Ui[q] ≥ (q + 2
3)/ln2 ⇐ q ≥ 0,

L1[q] ≥ Li[q] ≥ (q − 2
3)/ln2 ⇐ q > 0,{

U∞[q] ≥ Ui[q] ≥ log2[(5
3)

4
3 (4+q

4−q)2] ⇐ q < 0,

L∞[q] ≥ Li[q] ≥ log2[(4+q
4−q)2/(5

3)
4
3] ⇐ q ≤ 0.

(30)

PROOF: Let’s take Ui[q] as an example, and Li[q] goes
through the same proof process. We define 4−i as a new

variable k and the equation Ui[q] as a new function f(k) of
k, where 0 < k ≤ 1

4 . So

f(k) =
1

k
[tanh−12 (qk) +

2

3
tanh−12 (k)]

=
1

ln 2 · k
[tanh−1(qk) +

2

3
tanh−1(k)].

(31)

Taking the derivative of the function f(k), we can obtain

f
′
(k) =

1

k ln 2
[

q

1− (qk)2
− 1

2k
ln(

1 + qk

1− qk
)]+

2

3
· 1

k ln 2
[

1

1− k2
− 1

2k
ln(

1 + k

1− k
)]

=
1

k2 ln 2
[g(qk) +

2

3
g(k)],

(32)

where g(qk) = qk
1−(qk)2 −

1
2 ln(1+qk

1−qk). If we define qk as a
new variable t,

t ∈ (0,
1

2
] ⇐ q > 0,

t ∈ [−1

2
, 0) ⇐ q < 0.

(33)

If t = 0, g(t) = 0. The derivative of the function g(t) is

g
′
(t) =

t4 + t2

(1− t2)2
> 0. (34)

Thus, g(t) is a monotonically increasing function, and g(t) >
0 if q > 0. Conversely, g(t) < 0 if q < 0. When q = 1,
we will know that g(k) > 0. Further, f(k) (Ui[q]) is a
monotonically increasing (decreasing) function when q ≥ 0.
Because g(−t) = −g(t), when q = −1 or q = −2,

2

3
g(k) ≤ 2

3
g(−qk) = −2

3
g(qk), (35)

So f
′
(k) ≤ 1

k2 ln 2 ·
1
3g(qk) < 0, which shows f(k) (Ui[q])

is a monotonically decreasing (increasing) function when q <
0. To sum up, we can get the minimum value of Ui[q] for
different q.

Ui[q] ≥ P∞[q] +
2

3
P∞[1] = (q +

2

3
)/ln2, q ≥ 0,

Ui[q] ≥ P1[q] +
2

3
P1[1] = log2[(

5

3
)

4
3 (

4 + q

4− q
)2], q < 0.

(36)

After proving Li[q] in the same way, it will indicate that
the theorem in (30) is correct for i ≥ 1. Now we can use
(29) to find the most appropriate judgment boundary value for
selecting di. If i→∞,

L1[q + 1] ≤ U∞[q] ⇐ q ≥ 0,

L∞[q + 1] ≤ U1[q] ⇐ q < 0.
(37)

Then we will always have a common overlap region:

2.1873 = L1[2] ≤ Di(2) ≤ U∞[1] = 2.4045,

0.4913 = L1[1] ≤ Di(1) ≤ U∞[0] = 0.9618,

−0.9618 = L∞[0] ≤ Di(−1) ≤ U1[−1] = −0.4913,

−2.4045 = L∞[−1] ≤ Di(−2) ≤ Ui[−2] = −2.1873,

(38)

which is true for all i ≥ 1. Therefore, for H4G2HR-
CORDIC, the relationship among selection value, judgment
criteria, and overlap interval are presented in Table III. To
simplify the hardware implementation with fewer significant
bits, {2.25, 0.5, −0.5, −2.25} are selected as the judgment
boundary from the overlap interval.

TABLE III
H4G2HR-CORDIC: RELATIONSHIP AMONG SELECTION VALUE,

JUDGMENT CRITERIA AND OVERLAP INTERVAL

Selection Value Judgement Criteria Overlapping Interval

2 wi ≥ 2.25 [2.1873, 2.4045]

1 0.5 ≤ wi < 2.25 [0.4913, 0.9618]

0 −0.5 ≤ wi < 0.5 [−0.9618, −0.4913]
-1 −2.25 ≤ wi < −0.5 [−2.4045, −2.1873]
-2 wi < −2.25 /

D. Number of Iterations of HGH-CORDIC

According to the previous scholars’ derivation of the num-
ber of iterations of high-radix CORDIC [22], [27], to achieve
n-bit precision, we can get the same general rule as follows:

Nhgh = dn+ log2(r/2)

log2r
e, (39)

where Nhgh represents the minimum number of iterations
required for HGH-CORDIC. To facilitate the analysis, we still
take the commonly used H4G2HV-CORDIC and H4G2HR-
CORDIC as examples.

Let’s start with H4G2HV-CORDIC again. After some it-
erations n, we know that the rotation angle βn between the
X-axis and the final vector (xn, yn) is:

βn = tanh−12 (yn/xn) = tanh−12 (wn4−n/xn)

≤ tanh−12 [(2 +
2

3
)4−n] = tanh−12 (

4

3
· 2−2n+1).

(40)

Obviously, the value of 4
3 · 2

−2n+1 is between the interval
(2−2n+1, 2−2n+2). Therefore, the number of iterations re-
quired by H4G2HV-CORDIC is half less than that of tradi-
tional GHV-CORDIC, under the condition of achieving the
same accuracy. This is in line with the expected conclusion.

For H4G2HR-CORDIC, the derivation and proof process of
iterations is similar to that of high-radix circular CORDIC in
[13]. We omit the process in detail here. Also, we can conclude
that H4G2HR-CORDIC halves the number of iterations with
respect to the traditional GHR-CORDIC.

IV. SOFTWARE SIMULATION OF HGH-CORDIC

Based on the above theory, we can prove the correctness
of HGH-CORDIC through software simulation, and can in-
tuitively observe its advantages. To explain the differences
between different radix r and whether there are differences
between different base b, we choose four cases for simulation
using MATLAB and analyze them by control variable method.
The combinations of (r, b) corresponding to these cases are
(2, 2), (4, 2), (8, 2), and (4, 4). Their simulation results are

shown in Fig. 2. The horizontal coordinate is the number of
radix-r CORDIC iterations, and the vertical coordinate is the
calculation precision (expressed after taking log10 operation).
The default numeric type in MATLAB is double.

0 10 20 30 40 50 60
-16

-14

-12

-10

-8

-6

-4

-2

0

(19,-6)(9,-6)

 HV-r2b2
 HV-r4b2
 HV-r8b2
 HV-r4b4

lo
g 10

(P
re

ci
si

on
)

Iteration

(6,-6)

0 10 20 30 40 50 60

-16

-14

-12

-10

-8

-6

-4

-2

0

(19,-6)
(6,-6)

lo
g 10

(P
re

ci
si

on
)

Iteration

 HR-r2b2
 HR-r4b2
 HR-r8b2
 HR-r4b4

(9,-6)

(a)

(b)

Fig. 2. Computing logbx and bx using HGH-CORDIC and traditional GH-
CORDIC. (a) Vector Mode; (b) Rotation Mode.

For each case, we randomly selected 10,000 data from
different convergence ranges for testing. The results show that
the iterations of radix-4 is half of that of radix-2, and that
of radix-8 is two-thirds of that of radix-4, which is basically
consistent with the results of theoretical derivation. In addition,
under the condition of radix-4, no matter how b changes,
its convergence speed and calculation precision are basically
same, which is also in line with expectations.

V. ANALYSIS OF HARDWARE IMPLEMENTATION

In this section, we will analyze the hardware implemen-
tation architecture of HGH-CORDIC, whose general archi-
tecture is denoted as ARCH(r, b). Taking the specific case
ARCH(4, 2) as an example, we will analyze how to efficient-
ly implement the key components, including inverse scaling
factor K−1hgh, selection criteria di, and inverse hyperbolic
tangent function tanh−12 . Other architectures ARCH(r, b)
can learn from this idea and analyze them according to the
specific situations.

A. Analysis of the Inverse Scaling Factor

According to Table I, (9) and (11), when we use H4G2HV-
CORDIC to implement the logarithmic function, it is still not
necessary to calculate the scaling factor. However, when calcu-
lating the exponential function, the initial inputs of H4G2HR-
CORDIC can not be like (11), x0 and y0 should only be 1. At
this point, the scaling factor is no longer a predictable constant,
and we need to multiply K−1hgh after the number of iterations
is over. Obviously, calculating K−1hgh in (15) is a complicated
process because di is uncertain (d2i has three different values)
after each iteration. If it is implemented directly in hardware,
it will be very resource-consuming. One of the most common
solutions [13] is to take Taylor series expansion in (41) and
combine it with a smaller LUT.

K−1hgh = (1− d2i 4−2i)−
1
2 ≈ 1 +

1

2
d2i 4
−2i +

3

8
d4i 4
−4i + · · ·

(41)

For i > n/4, K−1hgh can be approximated as 1 because the
result of the second term 1

2d
2
i 4
−2i or more terms is often so

small relative to the expected precision that it can be ignored.
For i ≥ bn/8+1c, K−1hgh can be approximated by the first two
terms of (41) in n-bit precision. For i ≥ bn/12 + 1c, K−1hgh
can be approximated by the first three terms. For the remaining
iterations, we can implement it with a small LUT. Usually, the
scaling factor is determined by the first n/4 + 1 iterations for
n-bit precision. Compared with all the use of the LUT method,
through the hierarchical implementation, the size of LUT can
be reduced from 3n/4+1 to 3bn/12c+1.

For example, if n = 16, the required size of LUT is only
31 × 16 = 48 bits (i = 1). For the case i ≥ bn/12 + 1c = 2,
we can compute the scaling factor in each iteration using the
shift-and-add operation over the value obtained from LUT and
di. To use less logic, we can even all use LUT for iterations
less than i = bn/8 + 1c = 3. Even so, the LUT only needs
to store 32 − 1 = 8 16-bit data (0 is not stored). Then the
table should only have three input bits and 17 output bits
(including one integer bit). Therefore, although we do a lot
of approximation operations, compared to the full-precision
calculation implementation, the accuracy will not be lost. On
the contrary, our hardware overhead can be greatly reduced.

B. Analysis of the Selection Criteria

For H4G2HR-CORDIC, as can be seen from Table III, we
can select multiple combined boundary constant values within
the overlap interval. But for the sake of simplified hardware
implementation, we can choose a uniform set of hardware-
friendly comparison points {±0.5, ±2.25}. They require at
most 1 sign bit, 2 integer bits, and 2 fractional bits. That is,
the width of the comparator only needs to be up to 5 bits.

But for H4G2HV-CORDIC, the choice of di is related to
the variable xi. From [25], we can reduce the bit width of the
comparator without making errors. Otherwise, we have to use
an n-bit adder or subtractor to compare two points (Li and
Ui), which not only increases the hardware area but may also
have a longer delay than the shifters.

According to the theoretical derivation in [25], the distance
between Ua(xi) and Di(a+ 1) must be greater than or equal
to 1

6xi and it must be greater than 2−f , where f refers to
the truncated fractional bits. Assume that the input range
of log2x is [1, 2], that is, the initial value range of x0 of
H4G2HV-CORDIC is [2, 3]. Through analysis, the minimum
value of xi in all iterations is 2 and the maximum value is
3 (max{wi}=5.43). We can deduce that f > 1.585 and we
need at least 2 fractional bits. Therefore, we totally assimilate
6 bits for xi and wi, including 2 fractional bits, 3 integer bits,
and 1 sign bit.

C. Analysis of the Inverse Hyperbolic Tangent Function

No matter which mode HGH-CORDIC works in, they must
calculate tanh−1b (dir

−i). If we want to calculate it directly,
it is very complicated. The general method is to use LUT.
As the number of iterations increases, the size of the LUT
increases exponentially. To reduce the LUT size, we can find
an approximate scheme with low precision loss by Taylor
series expansion of tanh−1b x, which is shown in (42).

tanh−1b x =
1

lnb
(x+

1

3
x3 +

1

5
x5 + · · ·) (42)

It is observed that when i ≥ dn6 e, tanh−1b (dir
−i) can be

approximated to (dir
−i)/lnb. In this case, wi+1 in (13) and

zi+1 in (16) will become

wi+1 = r(wi −
1

lnb
di), zi+1 = zi +

1

lnb
(dir

−i), (43)

where 1
lnb is a concrete constant. When di 6= 0, there are

only two possible results for either r|di|
lnb or |di|lnb for fixed r

and b. For example, when r = 4 and b = 2, 4|di|
ln2 = 5.7708 or

11.5416, |di|ln2 = 1.4427 or 2.8854. The binary representation of
1.4427 is (1.0111)2, the other three constants can be obtained
by shifting 1, 2, or 3 bits to the left, respectively.

When i is less than dn6 e, we can calculate the complicated
term ri+1 tanh−1b (dir

−i) in (13) or the term tanh−1b (dir
−i)

in (16) in advance, and then select them by looking up the
table. Similarly, when r = 4, b = 2, and n = 16, we only
need to store 2× 2 = 4 constants in LUT except that di = 0.
Through the above approximate ideas, we can ensure that the
hardware resources are minimized. It is worth learning that
we can also use the zero-skipping technique [25] (used in
high-radix circular CORDIC) to further reduce the number of
iterations (about 20%) and resources.

D. Analysis of Performance

The proposed HGH-CORDIC is not only multi-functional
but also can speed up the iteration of hyperbolic CORDIC.
A comparative analysis of performance can be concluded in
Table IV under the same n-bit precision, including supported
functions, supported radix, and iterations.

In terms of hardware resources, high-radix CORDIC re-
quires comparators and a constant multiplier (only when com-
puting bx) compared to radix-2 CORDIC. The higher the radix,
the more comparators are needed for parallel computation,

TABLE IV
COMPARATIVE ANALYSIS OF PERFORMANCE

Item [17] [27] Proposed

Function logbx, bx lnx, ex logbx, bx

Radix 2 r ≥ 8 r ≥ 4

Iteration n+m dn−log2R
log2r

e+ 1 dn+log2(r/2)
log2r

e

m: The total repeated iterations, when i = 4, 13, 30, · · ·
R: R needs to be less than r.

otherwise the critical path will be too long. From the previous
work [14], we can observe that when designing a pipelined
hardware architecture, the area of radix-4 CORDIC will be
smaller than that of radix-2 due to the decreasing number of
cascades. Radix-8, on the other hand, has a small gain because
the implementation complexity increases dramatically but the
number of iterations decreases disproportionately.

In other aspects, the results are presented in Table IV.
Compared with [27], we can support the logarithmic and
exponential operations with arbitrary base. And we also sup-
port radix-4, which has the most cost-effective performance
and hardware overhead. Compared with the traditional GH-
CORDIC [17], we can reduce more iterations to speed up the
calculation of arbitrary logbx and bx. In general, the proposed
HGH-CORDIC gathers almost all the advantages of traditional
hyperbolic CORDIC, making it more perfect for hardware
implementation and applications.

VI. CONCLUSION

Compared with applied research, the development speed of
theoretical research is relatively lagging behind. To fill the
gap in theoretical research, we propose a theory of high-
radix generalized hyperbolic CORDIC for more applications.
Because base-2 logarithmic and exponential functions are the
most commonly used nonlinear symmetric pairing functions
in floating-point conversions, and radix-4 CORDIC is the best
cost-effective algorithm in hardware, we focus on the specific
case (r=4, b=2) to demonstrate the theory of HGH-CORDIC.
Then we elaborate on the feasibility and practicability of the
theory through simulation and analysis. Finally, the advantages
of HGH-CORDIC are summarized through comparative anal-
ysis, such as low latency and high precision, which are usually
difficult to achieve at the same time.

In the future, we will conduct research on its hardware
implementation based on this theory, especially to explore the
low-latency and high-precision hardware architectures for its
related applications, such as for XY -like functions.

REFERENCES

[1] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Trans. Electron. Comput., vol. EC-8, no. 3, pp. 330–334, 1959.

[2] J. S. Walther, “A unified algorithm for elementary functions,” in Spring.
Joint Computer Conf., 1971, pp. 379–385.

[3] F. De Dinechin and M. Istoan, “Hardware implementations of fixed-point
atan2,” in IEEE 22nd Symposium on Computer Arithmetic (ARITH),
2015, pp. 34–41.

[4] M. Langhammer and B. Pasca, “Floating point tangent implementation
for FPGAs,” in IEEE 24th Symposium on Computer Arithmetic (ARITH),
2017, pp. 64–65.

[5] J. Johnson, “Efficient, arbitrarily high precision hardware logarithmic
arithmetic for linear algebra,” in IEEE 27th Symposium on Computer
Arithmetic (ARITH), 2020, pp. 25–32.

[6] J. S. Walther, “The story of unified CORDIC,” Journal of VLSI Signal
Processing, vol. 25, no. 2, pp. 107–112, 2000.

[7] Z. F. Yang et al., “Given-rotation-based generalized eigenvalue decom-
position processor for MU-MIMO precoding,” in IEEE Int. Symposium
Circuits Syst. (ISCAS), 2019, pp. 1–4.

[8] A. Shiri and G. K. Khosroshahi, “An FPGA implementation of singular
value decomposition,” in Iranian Conf. Elect. Eng., 2019, pp. 416–422.

[9] D. Biswas, Z. Ye, E. B. Mazomenos, M. Jobges, and K. Maharatna,
“CORDIC framework for quaternion-based joint angle computation
to classify arm movements,” in IEEE Int. Symposium Circuits Syst.
(ISCAS), 2018, pp. 1–5.

[10] M. Heidarpur, A. Ahmadi, M. Ahmadi, and M. Rahimi Azghadi,
“CORDIC-SNN: On-FPGA STDP learning with Izhikevich neurons,”
IEEE Trans. Circuits Syst. I, vol. 66, no. 7, pp. 2651–2661, 2019.

[11] A. Chakraborty and A. Banerjee, “Low latency semi-iterative CORDIC
algorithm using normalized angle recoding and its VLSI implementa-
tion,” in Int. Conf. Commun. Signal Process. (ICCSP), 2019, pp. 13–20.

[12] T. K. Rodrigues and E. E. Swartzlander, “Adaptive CORDIC: Using
parallel angle recoding to accelerate rotations,” IEEE Trans. Comput.,
vol. 59, no. 4, pp. 522–531, 2010.

[13] E. Antelo, J. Villalba, J. Bruguera, and E. Zapata, “High performance
rotation architectures based on the radix-4 CORDIC algorithm,” IEEE
Trans. Comput., vol. 46, no. 8, pp. 855–870, 1997.

[14] J. Rudagi and S. Subbaraman, “Comparative analysis of radix-2, radix-4,
radix-8 CORDIC processors,” in Int. Conf. Inventive Comput. Informat.
(ICICI), 2017, pp. 378–382.

[15] X. Hu, R. Harber, and S. Bass, “Expanding the range of convergence
of the CORDIC algorithm,” IEEE Trans. Comput., vol. 40, no. 1, pp.
13–21, 1991.

[16] Y. Luo et al., “CORDIC-based architecture for computing Nth root and
its implementation,” IEEE Trans. Circuits Syst. I, vol. 65, no. 12, pp.
4183–4195, 2018.

[17] Y. Y. Luo et al., “Generalized hyperbolic CORDIC and its logarithmic
and exponential computation with arbitrary fixed base,” IEEE Trans.
VLSI Syst., vol. 27, no. 9, pp. 2156–2169, 2019.

[18] S. Mopuri and A. Acharyya, “Low complexity generic VLSI architecture
design methodology for Nth root and Nth power computations,” IEEE
Trans. Circuits Syst. I, vol. 66, no. 12, pp. 4673–4686, 2019.

[19] Y. Zhang et al., “High-precision method and architecture for base-2
softmax function in DNN training,” IEEE Trans. Circuits Syst. I, vol. 70,
no. 8, pp. 3268–3279, 2023.

[20] H. Chen, K. Cheng, Z. Lu, Y. Fu, and L. Li, “Hyperbolic CORDIC-
based architecture for computing logarithm and its implementation,”
IEEE Trans. Circuits Syst. II, vol. 67, no. 11, pp. 2652–2656, 2020.

[21] W. Hong et al., “Low-cost high-precision architecture for arbitrary
floating-point Nth root computation,” in IEEE Int. Symposium Circuits
Syst. (ISCAS), 2023, pp. 1–5.

[22] J. Bruguera, E. Antelo, and E. Zapata, “Design of a pipelined radix 4
CORDIC processor,” Parallel Computing, vol. 19, no. 7, pp. 729–744,
1993.

[23] T. Lang and P. Montuschi, “Very-high radix combined division and
square root with prescaling and selection by rounding,” in Proceedings
of the 12th Symposium on Computer Arithmetic (ARITH), 1995, pp.
124–131.

[24] M. Anane, H. Bessalah, M. Issad, N. Anane, and H. Salhi, “Higher radix
and redundancy factor for floating point SRT division,” IEEE Trans.
VLSI Syst., vol. 16, no. 6, pp. 774–779, 2008.

[25] J. Villalba, E. Zapata, E. Antelo, and J. Bruguera, “Radix-4 vectoring
CORDIC algorithm and architectures,” J. VLSI Signal Process. Syst.,
vol. 19, pp. 127–147, 1998.

[26] A. Changela, M. Zaveri, and A. Lakhlani, “ASIC implementation of high
performance radix-8 CORDIC algorithm,” in International Conference
on Advances in Computing, Communications and Informatics (ICACCI),
2018, pp. 699–705.

[27] E. Antelo, T. Lang, and J. D. Bruguera, “Very-high radix CORDIC
rotation based on selection by rounding,” J. VLSI Signal Process. Syst.,
vol. 25, pp. 141–153, 2000.

